In memory of Pieter Hofstra

Toposes and C^* -algebras [\[1\]](#page-27-0)

Jonathon Funk jfunk@qcc.cuny.edu

Queensborough Community College, CUNY

FMCS 2024

4 17 18

同 ▶ ∢ ヨ ▶ ∢

 Ω

1

How is polar decomposition from operator theory interpretated in topos theory?

2

What is the common ground shared by toposes and C^* -algebras? How do we match concepts between the two disciplines?

3

We define a left-cancellative category and a topos of a C^* -algebra in a manner that resembles what is done in pseudogroup and inverse semigroup theory [\[2,](#page-27-1) [3\]](#page-27-2), while recognizing that for C ∗ -algebras there are some distinct and novel points of departure from the semigroup constructions.

4

We work under a certain hypothesis we call a supported C ∗ -algebra.

5

The topos interpretation of polar decomposition we shall see is part of a correspondence between quotients of a torsion-free generator of the topos of a C^* -algebra and certain subcategories of its left-cancellative category.

Support/cosupport

Let H denote a Hilbert space Let $B(\mathcal{H})$ denote the C^* -algebra of bounded operators on \mathcal{H} . $\forall S, T, R \in B(\mathcal{H}) \text{ Ker}(S) \subseteq \text{Ker}(T) \Rightarrow \text{Ker}(SR) \subseteq \text{Ker}(TR)$.

For $T \in B(H)$ let $N(T)$ denote the projection associated with the subspace $\text{Ker}(\mathcal{T})$.

 $\forall S, T, R \ N(S) \leq N(T) \Rightarrow N(SR) \leq N(TR)$.

The support projection $C(T) = I - N(T^*)$ is the projection associated with $\text{Ran}(T)$. $\forall S, T, R : C(S) \leq C(T) \Rightarrow C(RS) \leq C(RT)$

 \triangleright \rightarrow \exists \triangleright \rightarrow

つくへ

A category associated with H

Let $L(\mathcal{H})$ denote the following category. Objects: the subspaces of H . Morphisms: $T : M \rightarrow N$ is a linear operator T on H such that $\text{Ker}(\mathcal{T}) = \mathcal{M}^{\perp}$, and $\text{Ran}(\mathcal{T}) \subseteq \mathcal{N}$.

 $L(H)$ is a category

 \triangleright \rightarrow \exists \triangleright \rightarrow

Example continued

We must have $\text{Ker}(\mathit{TS}) = K^\perp$

We have
$$
\text{Ker}(S) = K^{\perp}
$$
 and $\text{Ran}(S) \subseteq M = \text{Ker}(T)^{\perp}$
Therefore, $\text{Ker}(T) \subseteq \text{Ker}(S^*)$
Hence, $\text{Ker}(TS) \subseteq \text{Ker}(S^*) \implies \text{Ker}(S)$
The other inclusion $\text{Ker}(S) \subseteq \text{Ker}(TS)$ is trivial.
Therefore, $\text{Ker}(TS) = \text{Ker}(S)$

$L(\mathcal{H})$ is left-cancellative

Let $T : M \rightarrow N$ be a morphism. Let P denote the projection associated with the subspace $M: \text{Ker}(\mathcal{T}) = \text{Ker}(P)$. Suppose that $TS = TR$, where $S, R: K \rightarrow M$. Then for any $v \in \mathcal{H}$, we have $S(v) - R(v) \in \text{Ker}(T)$. Thus, $P(S(v) - R(v)) = 0$, whence $S(v) = PS(v) = PR(v) = R(v)$. Thus, $S = R$.

 \leftarrow \Box

→ 何 ▶ → ヨ ▶ → ヨ ▶

Support/cosupport projection

Let $T \in \mathcal{A}$.

- A support projection $C(T)$ satisfies $C(T) \le P$ iff $T = PT$ (so $T = C(T)T$)
- A cosupport projection $N(T)$ satisfies $P \leq N(T)$ iff $TP = 0$ (so $TN(T)=0$)

Lemma: If $C(T)$ exists, then $C(TT^*) = C(T)$.

This follows from the C^* -identity $\|TT^*\| = \|T\|^2$

母 ▶ ヨ ヨ ▶ ヨ ヨ

Support hypothesis

We shall say that a C^* -algebra $\mathcal A$ is supported if:

• every
$$
\mathcal{T} \in \mathcal{A}
$$
 has a support projection $C(T)$ such that

$$
\bullet \ \forall \, S, \, T, R: \ C(S) \leq C(T) \Rightarrow C(RS) \leq C(RT) \text{ (Stability)}.
$$

The support hypothesis has an equivalent cosupport form:

Cosupport

 \bullet every T has a cosupport projection $N(T)$ such that

$$
P \quad \forall S, T, R: N(S) \leq N(T) \Rightarrow N(SR) \leq N(TR).
$$

von Neumann algebra

 $B(H)$ and more generally any von Neumann algebra is supported in this sense.

Existence

 $T = VA$ such that:

• *V* is a partial isometry:
$$
VV^*V = V
$$

2 A is positive: self-adjoint and spectrum \subseteq [0, ∞) $C(A) = V^*V$

Note: $T^*T = AV^*VA = AC(A)A = AA = A^2$; $|T| =$ √ $T^*T = A$, so that $C(\mathcal{T}^*)=C(\mathcal{T}^*\mathcal{T})=C(A^2)=C(A)=C(|\mathcal{T}|)$

Another way: $T = V|T|$; $C(T^*) = V^*V$

Uniqueness

If
$$
T = VA = UB
$$
; $C(A) = V^*V$; $C(B) = U^*U$
then $U = V$ and $A = B$.

Supported implies uniqueness

If A is supported, then a polar decomposition of an element is necessarily unique.

Definition of $L(\mathcal{A})$

Let A denote a unital supported C^* -algebra.

Objects: projections P of $A(P^*P = P)$ Morphisms: $T: P \rightarrow Q$, $C(T^*) = P$ (iff $N(T) = I - P$), and $T = QT(C(T) \leq Q)$

Another way: a morphism is a pair (T, Q) such that $T = QT$. Domain of (T, Q) is $C(T^*)$ Codomain of (T, Q) is Q

つくへ

$L(\mathcal{A})$ is a category P TS i, S ¥ Q $\overline{I} \longrightarrow 0$ We have $\mathcal{C}(\mathcal{S}) \leq Q = \mathcal{C}(\mathcal{T}^*)$. Then $P = C(S^*) = C(S^*S)$ $\begin{cases} \leq \end{cases}$ $C(S^*T^*) \leq C(S^*)$ stability Thus, $P = C(S^*T^*) = C((TS)^*)$. We also have $T = OT$ so of course $TS = OTS$. The identity morphism $P \rightarrow P$ is simply P. Indeed, if $T : P \rightarrow Q$ is a morphism, then $TP = TC(T^*) = T$ and $QT = T$.

$L(\mathcal{A})$ is left-cancellative

Suppose that we have morphisms

$$
P \xrightarrow{\qquad S} Q \xrightarrow{\qquad T} O \text{ such that } TS = TR.
$$

\nThen $T(S - R) = 0 \Rightarrow (S^* - R^*)T^* = 0$
\n $\Rightarrow C((S^* - R^*)T^*) = 0.$
\nWe have $C(Q) = Q = C(T^*)$
\nstability
\nTherefore, $C((S^* - R^*)Q) \leq C((S^* - R^*)T^*) = 0$
\n $\Rightarrow (S^* - R^*)Q = 0$
\n $\Rightarrow Q(S - R) = 0 \Rightarrow S = QS = QR = R.$

€ □ 下

する * キョー

E

ヨッ

Topos of presheaves on $L(\mathcal{A})$: $\mathscr{B}(\mathcal{A})$

Definition of $\mathscr{B}(A)$

An object of this topos is a functor: $F: L(A)^{op} \longrightarrow Set$

Representable presheaf

Let Q be a projection. $Q: L(A)^{op} \longrightarrow Set$ $Q(P) = L(A)(P,Q) = \{ T \in A \mid C(T^*) = P : T = QT \}$ Transition in Q along $S: O \rightarrow P: T \cdot S = TS$ for $C(T^*) = P$

同 ▶ ∢ ヨ ▶ ∢

つくへ

Representable presheaf associated with the unit I

 $I: L(\mathcal{A})^{\mathrm{op}} \longrightarrow Set$ $I(P) = \{ T \in A \mid C(T^*) = P \}$ Transition in I along $S: O \rightarrow P: T \cdot S = TS$ for $C(T^*) = P$ (Existence of unit I not necessary)

$\mathscr{B}(\mathcal{A})$ is an étendue

The presheaf I is a torsion-free generator $[4]$.

御 ▶ イヨ ▶ イヨ ▶

The positive quotient

The presheaf of positive operators

$$
I^{+}: L(A)^{\text{op}} \longrightarrow Set
$$

\n
$$
I^{+}(P) = \{ A \in A \mid 0 \le A ; C(A) = P \}
$$

\nTransition in I^{+} :
\nlet $S: P \rightarrow Q$ is a morphism of $L(A)$ and $C(A) = Q$
\nDefine $A \cdot S = S^{*}AS = (\sqrt{AS})^{*} \sqrt{AS}$, which is positive.
\nThen $C(S^{*}AS) = C((\sqrt{AS})^{*} \sqrt{AS}) = C((\sqrt{AS})^{*}) = P$, where
\n $\sqrt{A}: Q \rightarrow Q$ is a morphism of $L(A)$; $C(\sqrt{A}) = C(A) = Q$

The quotient map $d: I \longrightarrow I^+$

$$
d_P: I(P) \rightarrow I^+(P); d_P(T) = T^*T
$$

d is a natural transformation: $S^*T^*TS = (TS)^*TS$
d is an epimorphism: if $C(A) = P$, then $d_P(\sqrt{A}) = A$.
Caution: $A \mapsto \sqrt{A}$ is not a section of d.

4 17 18

つくへ

∍

START

Wide subcategory

Group actions

Suppose that $f : H \to G$ is an injective homomorphism. Then the (right) coset G/H is a G-set (object of $\mathscr{B}(G)$), and $G \rightarrow G/H$ is an equivariant map (morphism of $\mathscr{B}(G)$). We have geometric morphisms:

The one depicted horizontally is an equivalence. Therefore, the one associated with f is étale.

A functor $\mathcal{D} \longrightarrow L(\mathcal{A})$ is a wide subcategory if:

- \bullet D has the same set of objects as $L(A)$, which is the set of projections of \mathcal{A} ;
- 2 the functor is faithful usually we just assume $\mathcal{D}(P,Q) \subseteq L(\mathcal{A})(P,Q)$, for every P,Q ;
- **3.** every subprojection $P \leq Q$ is a morphism of D. Thus, for all projections P , Q we have $\mathcal{P}(\mathcal{A})(P,Q) \subseteq \mathcal{D}(P,Q) \subseteq L(\mathcal{A})(P,Q);$
- for $S, T \in \mathcal{A}$ such that $C(T) \leq C(S^*)$ $(T = C(S^*)T)$, if $S, ST \in \mathcal{D}$, then $T \in \mathcal{D}$.

Two trivial ones

$$
\mathcal{P}(\mathcal{A}) \longrightarrow L(\mathcal{A}) \text{ and } L(\mathcal{A}) \longrightarrow L(\mathcal{A})
$$

The wide subcategory of partial isometries

$$
\partial(A) \longrightarrow L(A)
$$

 $V: P \longrightarrow Q$ such that $P = V^*V$ and $V = QV$

つくへ

Right cosets of a wide subcategory $\mathcal{D} \rightarrow L(\mathcal{A})$

The right coset of $\mathcal{T} \in \mathcal{A}$

$$
\mathcal{D}\mathcal{T} = \{ST \mid S \in \mathcal{D} ; C(T) \leq C(S^*)\}
$$

The presheaf of right cosets

Define a presheaf $I/D(P) = \{ DT | C(T^*) = P \}$ Transition along $S : P \to Q$ is given by $DT \cdot S = D(TS)$.

The quotient of right cosets

$$
q: I \rightarrow I/D
$$

\n $q_P: I(P) \rightarrow I/D(P)$; $q_P(T) = DT$, for $C(T^*) = P$

同→ イヨ → イヨ

The principal fiber of a map $I\rightarrow X$

Given a map $q: I \twoheadrightarrow X$ of $\mathscr{B}(\mathcal{A})$

Define a subcategory $\mathcal{F}(q)$ \longrightarrow $\mathcal{L}(\mathcal{A})$: Objects: projections of A Morphisms: $S : P \rightarrow Q$ such that $q_P(S) = q_P(P)$, where $q_P: I(P) \to X(P)$.

Morphism of $\mathcal{F}(q)$ interpreted in $\mathscr{B}(A)$

イロト イ押 トイヨ トイヨ トー

E

$\mathcal{F}(q){\:\longrightarrow\:} L(\mathcal{A})$ is wide

PROOF: 4. Suppose we have $T: O \rightarrow P$ and $S: P \rightarrow Q$, such that $q_O(ST) = q_O(O)$ and $q_P(S) = q_P(P)$. Then we have $q_{O}(T) = q_{O}(PT) = q_{P}(P) \cdot T = q_{P}(S) \cdot T = q_{O}(ST) = q_{O}(O)$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ │ ヨ │ め&企

Proposition

The principal fiber of the positive quotient $d: I \rightarrow I^+$ coincides with the wide subcategory of partial isometries $\partial(\mathcal{A}){\longrightarrow} \mathsf{L}(\mathcal{A})$.

医阿里氏阿里氏

The counit

Start with $q:I\,\to\, X$

Then form $\mathcal{F}(q)$ —> $\mathcal{L}(\mathcal{A})$, and its quotient of cosets. I

$$
1/F(q) \xrightarrow{\varepsilon(q)} X
$$

The component $\varepsilon(q)_P$ at a projection P of the factoring map $\varepsilon(q)$ is defined by $\varepsilon(q)_P(\mathcal{F}(q)T)=q_P(T)$; $C(T^*)=P$

Exact quotient of I

We say that $q:I\,\to\, X$ is exact if $\varepsilon(q)$ is an isomorphism.

御 ▶ す 君 ▶ す 君 ▶

Definition

A wide subcategory $\mathcal{D} \longrightarrow L(\mathcal{A})$ is principal if for all $S \in \mathcal{D}$ we have $C(S^*) \in \mathcal{DS}$.

Remark

A wide subcategory $\mathcal{D} \longrightarrow L(\mathcal{A})$ is principal iff for all $S \in \mathcal{D}$ we have $DS = \mathcal{DC}(S^*)$.

Proposition

There is a bijective correspondence between the principal wide subcategories of $L(A)$, and the exact quotients of *l* in $\mathscr{B}(A)$.

何 ト ィヨ ト ィヨ ト

Theorem

Let A be a unital supported C^* -algebra.

Then A has polar decomposition iff the positive quotient d is exact.

Corollary

The positive quotient in the topos of a von Neumann algebra is exact.

Proof: A von Neumann algebra has polar decomposition.

'Scratching the surface'

Morita equivalence

Cohomology

Factor theory

Factor theory of von Neumann algebras is related to isotropy theory of toposes.

Topos representations of a (supported) C^* -algebra ${\mathcal A}$

This is a functor

$$
L(\mathcal{A}) \longrightarrow \mathscr{E} \ ,
$$

which may be filtered, etc. For instance, the canonical one

$$
\mathsf{Y} \mathsf{on} \mathsf{ed} \mathsf{a} : L(\mathcal{A}) \longrightarrow \mathscr{B}(\mathcal{A}) \; .
$$

 $Q \cap$

Bibliography

Toposes for semigroups: an invitation. Semigroup Forum, 103:715–776, 2021.

J. Funk and P. Hofstra. Pseudogroups and their torsors. Semigroup Forum, 104:281–319, 2022.

F. A. Kock and I. Moerdijk.

Presentations of étendues.

Cahiers de Top. et Géom. Diff. Catégoriques, 32(2):145-164, 1991.

Thank you

 \leftarrow \Box \rightarrow

×,

個→ メミト メミト

E