In memory of Pieter Hofstra

Toposes and C^* -algebras [1]

Jonathon Funk jfunk@qcc.cuny.edu

Queensborough Community College, CUNY

FMCS 2024

→ < Ξ → <</p>

1

How is polar decomposition from operator theory interpretated in topos theory?

2

What is the common ground shared by toposes and C^* -algebras? How do we match concepts between the two disciplines?

3

We define a left-cancellative category and a topos of a C^* -algebra in a manner that resembles what is done in pseudogroup and inverse semigroup theory [2, 3], while recognizing that for C^* -algebras there are some distinct and novel points of departure from the semigroup constructions.

4

We work under a certain hypothesis we call a supported C^* -algebra.

5

The topos interpretation of polar decomposition we shall see is part of a correspondence between quotients of a torsion-free generator of the topos of a C^* -algebra and certain subcategories of its left-cancellative category.

Support/cosupport

Let \mathcal{H} denote a Hilbert space Let $B(\mathcal{H})$ denote the C^* -algebra of bounded operators on \mathcal{H} . $\forall S, T, R \in B(\mathcal{H}) \operatorname{Ker}(S) \subseteq \operatorname{Ker}(T) \Rightarrow \operatorname{Ker}(SR) \subseteq \operatorname{Ker}(TR)$.

For $T \in B(\mathcal{H})$ let N(T) denote the projection associated with the subspace Ker(T).

$$\forall S, T, R \ N(S) \leq N(T) \Rightarrow N(SR) \leq N(TR).$$

The support projection $C(T) = I - N(T^*)$ is the projection associated with $\overline{\text{Ran}(T)}$. $\forall S, T, R : C(S) \le C(T) \Rightarrow C(RS) \le C(RT)$

A category associated with $\ensuremath{\mathcal{H}}$

Let $L(\mathcal{H})$ denote the following category. Objects: the subspaces of \mathcal{H} . Morphisms: $T : M \rightarrow N$ is a linear operator T on \mathcal{H} such that $\operatorname{Ker}(T) = M^{\perp}$, and $\operatorname{Ran}(T) \subseteq N$.

 $L(\mathcal{H})$ is a category

Example continued

We must have $\overline{\operatorname{Ker}(TS)} = K^{\perp}$

We have
$$\operatorname{Ker}(S) = K^{\perp}$$
 and $\operatorname{Ran}(S) \subseteq M = \operatorname{Ker}(T)$
Therefore, $\operatorname{Ker}(T) \subseteq \operatorname{Ker}(S^*)$
Hence, $\operatorname{Ker}(TS) \subseteq \operatorname{Ker}(S^*S) \xrightarrow{exercise} \operatorname{Ker}(S)$
The other inclusion $\operatorname{Ker}(S) \subseteq \operatorname{Ker}(TS)$ is trivial.
Therefore, $\operatorname{Ker}(TS) = \operatorname{Ker}(S)$

$L(\mathcal{H})$ is left-cancellative

Let $T: M \rightarrow N$ be a morphism. Let P denote the projection associated with the subspace $M: \operatorname{Ker}(T) = \operatorname{Ker}(P)$. Suppose that TS = TR, where $S, R: K \rightarrow M$. Then for any $v \in H$, we have $S(v) - R(v) \in \operatorname{Ker}(T)$. Thus, P(S(v) - R(v)) = 0, whence S(v) = PS(v) = PR(v) = R(v). Thus, S = R.

Jon

- 4 同 ト 4 ヨ ト 4 ヨ ト

Support/cosupport projection

Let $T \in \mathcal{A}$.

- A support projection C(T) satisfies C(T) ≤ P iff T = PT (so T = C(T)T)
- A cosupport projection N(T) satisfies P ≤ N(T) iff TP = 0 (so TN(T) = 0)

Lemma: If C(T) exists, then $C(TT^*) = C(T)$.

This follows from the C*-identity $||TT^*|| = ||T||^2$

/⊒ ▶ ◀ ⊒ ▶ ◀

Support hypothesis

We shall say that a C^* -algebra \mathcal{A} is supported if:

() every
$$T \in A$$
 has a support projection $C(T)$ such that

$$\forall S, T, R : C(S) \leq C(T) \Rightarrow C(RS) \leq C(RT)$$
 (Stability).

The support hypothesis has an equivalent cosupport form:

Cosupport

• every T has a cosupport projection N(T) such that

$$\forall S, T, R : N(S) \le N(T) \Rightarrow N(SR) \le N(TR).$$

von Neumann algebra

 $B(\mathcal{H})$ and more generally any von Neumann algebra is supported in this sense.

Existence

T = VA such that:

• V is a partial isometry:
$$VV^*V = V$$

2 A is positive: self-adjoint and spectrum $\subseteq [0,\infty)$

$$O C(A) = V^*V$$

Note: $T^*T = AV^*VA = AC(A)A = AA = A^2$; $|T| = \sqrt{T^*T} = A$, so that $C(T^*) = C(T^*T) = C(A^2) = C(A) = C(|T|)$

Another way: T = V|T|; $C(T^*) = V^*V$

Uniqueness

If
$$T = VA = UB$$
; $C(A) = V^*V$; $C(B) = U^*U$
then $U = V$ and $A = B$.

Supported implies uniqueness

If ${\mathcal A}$ is supported, then a polar decomposition of an element is necessarily unique.

Definition of L(A)

Let \mathcal{A} denote a unital supported C^* -algebra.

Objects: projections P of $\mathcal{A}(P^*P = P)$ Morphisms: $T: P \rightarrow Q$, $C(T^*) = P$ (iff N(T) = I - P), and $T = QT (C(T) \leq Q)$

Another way: a morphism is a pair (T, Q) such that T = QT. Domain of (T, Q) is $C(T^*)$ Codomain of (T, Q) is Q

$L(\mathcal{A})$ is a category We have $C(S) \leq Q = C(T^*)$. stability Then $P = C(S^*) = C(S^*S) \quad \leq \quad C(S^*T^*) \leq C(S^*)$ Thus, $P = C(S^*T^*) = C((TS)^*)$. We also have T = OT so of course TS = OTS. The identity morphism $P \rightarrow P$ is simply P. Indeed, if $T: P \rightarrow Q$ is a morphism, then $TP = TC(T^*) = T$ and QT = T.

$L(\mathcal{A})$ is left-cancellative

Suppose that we have morphisms

$$P \underbrace{\longrightarrow}_{R} Q \underbrace{T}_{R} O \text{ such that } TS = TR.$$

Then $T(S - R) = 0 \Rightarrow (S^* - R^*)T^* = 0$
 $\Rightarrow C((S^* - R^*)T^*) = 0.$
We have $C(Q) = Q = C(T^*)$
stability
Therefore, $C((S^* - R^*)Q) \underbrace{\leq}_{S} C((S^* - R^*)T^*) = 0$
 $\Rightarrow (S^* - R^*)Q = 0$
 $\Rightarrow Q(S - R) = 0 \Rightarrow S = QS = QR = R.$

э

() 《 문 》 《

Topos of presheaves on $L(\mathcal{A})$: $\mathscr{B}(\mathcal{A})$

Definition of $\mathscr{B}(\mathcal{A})$

An object of this topos is a functor: $F: L(\mathcal{A})^{\operatorname{op}} \longrightarrow Set$

Representable presheaf

Let Q be a projection. $Q: L(\mathcal{A})^{\mathrm{op}} \longrightarrow Set$ $Q(P) = L(\mathcal{A})(P, Q) = \{ T \in \mathcal{A} \mid C(T^*) = P ; T = QT \}$ Transition in Q along $S: O \rightarrow P: T \cdot S = TS$ for $C(T^*) = P$

Jon

Representable presheaf associated with the unit I

 $I : L(\mathcal{A})^{\mathrm{op}} \longrightarrow Set$ $I(P) = \{ T \in \mathcal{A} \mid C(T^*) = P \}$ Transition in I along $S : O \rightarrow P : T \cdot S = TS$ for $C(T^*) = P$ (Existence of unit I not necessary)

$\mathscr{B}(\mathcal{A})$ is an étendue

The presheaf I is a torsion-free generator [4].

伺 ト イヨ ト イヨト

The positive quotient

The presheaf of positive operators

$$I^{+}: L(\mathcal{A})^{\mathrm{op}} \longrightarrow Set$$

$$I^{+}(P) = \{ A \in \mathcal{A} \mid 0 \le A ; C(A) = P \}$$
Transition in I^{+} :
let $S: P \rightarrow Q$ is a morphism of $L(\mathcal{A})$ and $C(A) = Q$
Define $A \cdot S = S^{*}AS = (\sqrt{A}S)^{*}\sqrt{A}S$, which is positive.
Then $C(S^{*}AS) = C((\sqrt{A}S)^{*}\sqrt{A}S) = C((\sqrt{A}S)^{*}) = P$, where
 $\sqrt{A}: Q \rightarrow Q$ is a morphism of $L(\mathcal{A}); C(\sqrt{A}) = C(A) = Q$

The quotient map $d: I \longrightarrow I^+$

$$d_P: I(P) \rightarrow I^+(P); d_P(T) = T^*T$$

 d is a natural transformation: $S^*T^*TS = (TS)^*TS$
 d is an epimorphism: if $C(A) = P$, then $d_P(\sqrt{A}) = A$.
Caution: $A \mapsto \sqrt{A}$ is not a section of d .

Wide subcategory

Group actions

Suppose that $f : H \rightarrow G$ is an injective homomorphism. Then the (right) coset G/fH is a G-set (object of $\mathscr{B}(G)$), and $G \rightarrow G/fH$ is an equivariant map (morphism of $\mathscr{B}(G)$). We have geometric morphisms:

The one depicted horizontally is an equivalence. Therefore, the one associated with f is étale.

A functor $\mathcal{D} \longrightarrow L(\mathcal{A})$ is a wide subcategory if:

- D has the same set of objects as L(A), which is the set of projections of A;
- So the functor is faithful usually we just assume $\mathcal{D}(P,Q) \subseteq L(\mathcal{A})(P,Q)$, for every P,Q;
- every subprojection $P \leq Q$ is a morphism of \mathcal{D} . Thus, for all projections P, Q we have $\mathcal{P}(\mathcal{A})(P, Q) \subseteq \mathcal{D}(P, Q) \subseteq L(\mathcal{A})(P, Q)$;
- for $S, T \in \mathcal{A}$ such that $C(T) \leq C(S^*)$ $(T = C(S^*)T)$, if $S, ST \in \mathcal{D}$, then $T \in \mathcal{D}$.

Jon

→ < Ξ → <</p>

Two trivial ones

$$\mathcal{P}(\mathcal{A}) \longrightarrow \mathcal{L}(\mathcal{A}) \text{ and } \mathcal{L}(\mathcal{A}) \longrightarrow \mathcal{L}(\mathcal{A})$$

The wide subcategory of partial isometries

$$\partial(\mathcal{A}) \longrightarrow \mathcal{L}(\mathcal{A})$$

 $V : P \rightarrow Q$ such that $P = V^*V$ and $V = QV$

Right cosets of a wide subcategory $\mathcal{D} \longrightarrow \mathcal{L}(\mathcal{A})$

The right coset of $T \in A$

$$\mathcal{D}T = \{ ST \mid S \in \mathcal{D} ; C(T) \leq C(S^*) \}$$

The presheaf of right cosets

Define a presheaf $I/\mathcal{D}(P) = \{ \mathcal{D}T \mid C(T^*) = P \}$ Transition along $S : P \rightarrow Q$ is given by $\mathcal{D}T \cdot S = \mathcal{D}(TS)$.

The quotient of right cosets

$$\begin{aligned} q: I &\to I/\mathcal{D} \\ q_P: I(P) &\to I/\mathcal{D}(P) \text{ ; } q_P(T) = \mathcal{D}T \text{ , for } C(T^*) = P \end{aligned}$$

/□ ▶ ◀ ⋽ ▶ ◀

The principal fiber of a map $I \rightarrow X$

Given a map $q: I \rightarrow X$ of $\mathscr{B}(\mathcal{A})$

Define a subcategory $\mathcal{F}(q) \longrightarrow L(\mathcal{A})$: Objects: projections of \mathcal{A} Morphisms: $S : P \rightarrow Q$ such that $q_P(S) = q_P(P)$, where $q_P : I(P) \rightarrow X(P)$.

Morphism of $\mathcal{F}(q)$ interpreted in $\mathscr{B}(\mathcal{A})$

э

イロト イポト イヨト ・

$\mathcal{F}(q) \longrightarrow L(\mathcal{A})$ is wide

PROOF: 4. Suppose we have $T : O \rightarrow P$ and $S : P \rightarrow Q$, such that $q_O(ST) = q_O(O)$ and $q_P(S) = q_P(P)$. Then we have $q_O(T) = q_O(PT) = q_P(P) \cdot T = q_P(S) \cdot T = q_O(ST) = q_O(O)$

<回▶ < 回▶ < 回▶ = 回

Proposition

The principal fiber of the positive quotient $d: I \rightarrow I^+$ coincides with the wide subcategory of partial isometries $\partial(\mathcal{A}) \longrightarrow L(\mathcal{A})$.

• • = • • = •

The counit

Start with $q: I \rightarrow X$

Then form $\mathcal{F}(q) \longrightarrow L(\mathcal{A})$, and its quotient of cosets.

$$I/\mathcal{F}(q) \xrightarrow{\varepsilon(q)} X$$

The component $\varepsilon(q)_P$ at a projection P of the factoring map $\varepsilon(q)$ is defined by $\varepsilon(q)_P(\mathcal{F}(q)T) = q_P(T)$; $C(T^*) = P$

Exact quotient of I

We say that $q: I \rightarrow X$ is exact if $\varepsilon(q)$ is an isomorphism.

伺 ト イヨト イヨト

Definition

A wide subcategory $\mathcal{D} \longrightarrow L(\mathcal{A})$ is principal if for all $S \in \mathcal{D}$ we have $C(S^*) \in \mathcal{D}S$.

Remark

A wide subcategory $\mathcal{D} \longrightarrow L(\mathcal{A})$ is principal iff for all $S \in \mathcal{D}$ we have $\mathcal{D}S = \mathcal{D}C(S^*)$.

Proposition

There is a bijective correspondence between the principal wide subcategories of L(A), and the exact quotients of I in $\mathscr{B}(A)$.

御下 くほと くほど

Polar decomposition in $\mathscr{B}(\mathcal{A})$

Theorem

Let \mathcal{A} be a unital supported C^* -algebra.

Then \mathcal{A} has polar decomposition iff the positive quotient d is exact.

Corollary

The positive quotient in the topos of a von Neumann algebra is exact.

Proof: A von Neumann algebra has polar decomposition.

'Scratching the surface'

Morita equivalence

Cohomology

Factor theory

Factor theory of von Neumann algebras is related to isotropy theory of toposes.

Topos representations of a (supported) C^* -algebra \mathcal{A}

This is a functor

$$L(\mathcal{A}) \longrightarrow \mathscr{E}$$
,

which may be filtered, etc. For instance, the canonical one

Yoneda :
$$L(\mathcal{A}) \longrightarrow \mathscr{B}(\mathcal{A})$$
.

Bibliography

J. Funk and P. Hofstra. Pseudogroups and their torsors. Semigroup Forum, 104:281–319, 2022.

A. Kock and I. Moerdijk.

Presentations of étendues.

Cahiers de Top. et Géom. Diff. Catégoriques, 32(2):145–164, 1991.

Thank you

æ

▶ < E > <</p>

3